

An Attack-Defense Model for the Binder on the

Android Kernel Level

Majid Salehi

Sharif University of Technology

Tehran, Iran

masalehi@ce.sharif.edu

Mohammad Hesam

Tadayon

Iran Telecommunication

Research Center (ITRC)

Tehran, Iran

tadayon@itrc.ac.ir

Farid Daryabar

Iran Telecommunication

Research Center (ITRC)

Tehran, Iran

f.daryabar@itrc.ac.ir

Received: December 9, 2016 - Accepted: March 2, 2017

Abstract—In this paper, we consider to seek vulnerabilities and we conduct possible attacks on the crucial and essential

parts of Android OSs architecture including the framework and the Android kernel layers. As a regard, we explain the

Binder component of Android OS from security point of view. Then, we demonstrate how to penetrate into the Binder

and control data exchange mechanism in Android OS by proposing a kernel level attack model based on the hooking

method. In addition, we provide a method to detect these kinds of attacks on Android frameworks and the kernel layer.

As a result, by implementing the attack model, it is illustrated that the Android processes are detectable and the data

can be extracted from any process and system calls. On the other hand, by using our detection proposed method the

possibility of using this attack approach in the installed applications on the Android smartphones will be sharply

decreased.

Keywords- smartphone security; android security; android penetration testing; binder component; kernel level attack

I. INTRODUCTION

Nowadays, the technology regarding smartphone

devices has shown revolutionary development over the

past few years. from year 2009 to 2014, there had been

a sharp increase in the rate of smartphone usability in

different kind of areas and applications, approximately

88% per year [1], [2]. There are vast varieties of factors

that have a great influence on our daily life, but just like

the two sides of a coin they offer both benefits and

drawbacks, and smartphones are of no exception.

Considering the fact that PCs have been around for a

long time compared with smartphones, the reported

existing malware for smartphones have been essentially

and practically simpler than created PCs’ malware so

far [3].

The usability of PCs is increasingly shifting toward

smartphones. Thus, smartphones grew to become

subjects to the same or even greater vulnerabilities as

PCs. Android malware can violate users’ privacy and

they can access users’ confidential information using

different malicious methods [4]. The majority of the

written malicious codes for Android OS thus far has

targeted the upper layers of Android OSs; however, the

lower layers including the framework layer and the

kernel layer have not been targeted and penetrated up to

this point [3].

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
20

]

 1 / 8

https://journal.itrc.ac.ir/article-1-37-en.html

 Moreover, the issue common among all the Android

malware is that all of which are designed with a general

knowledge in upper layers of Android OSs’

architecture. As a result, this issue leads us to consider

on a research in detecting vulnerabilities and

conducting possible attacks in the crucial and essential

part of Android OSs architecture including the

framework and the kernel layers in depth.

 In this paper, we consider the structure and

architecture of one of the most critical and fundamental

components in Android OSs that have been studied in

[23]. Moreover this significant area has lack of

literature by the researchers and practitioners. This

component is named Binder which is a vital component

and it plays the role of a bridge between upper layers

and the lower layers of Android OSs [5]. With

implementing an attack on Binder in order to take

possession of it, we will have a grant and an executed

control of all the data exchanged between applications

and services. Actually, the nature of characteristic and

features of Binder provide us accessibility to all

communicated information and sensitive data on

Android. Therefore, taking control of the Binder

approaches to take control of the whole Android OS.

As mentioned, Android services and applications

need to communicate and share data to facilitate inter-

process communication through the Binder component.

Binder is implemented in layers of application and

kernel [3], [5]. The reference of [3], is the only research

that considered the security of this critical component

in the application layer; however, there is no

consideration on the kernel layer. Moreover, the rest of

the existing literatures considered on the architecture of

Binder and there is no contribution on the security point

of view in this vital component especially the Binder in

the kernel layer. Therefore, we consider the analysis

and investigation of the Binder architecture in the

kernel layer for the first time. We provide an attack

model based on Hooking method which can be utilized

to capture and extract all the messages exchanged

through the Binder driver.

Additionally, to detect and prevent this hooking

method at the user and kernel levels, we proposed a

detection method which makes these kind of attacks

almost impossible.

This paper consists of an introduction and follows

the sections which describe the fundamental concepts

in Section 2, the related works in Section 3, the

proposed attack model in Section 4, the implementation

in Section 5, and the evaluation of the proposed model

in Section 6. In the end, we conclude the paper and

follow up with future research opportunities in Section

7.

II. FUNDAMENTAL CONCEPTS

In this section the fundamental concepts of Android

architecture and data exchange mechanism are

provided.

A. Android architecture

As illustrated in Fig. 1, Android OS is a layered OS

and its components are divided into three layers. The

lowest layer is the kernel layer which provides Linux

kernel to the upper layers. The duty of this layer is

management of the network services, drivers, file

systems, memory, and process. Therefore, Android OS

is designed base on the Linux kernel.

The second layer is named Middleware which is

divided into three parts. The first part is C and C++

native libraries that are included libc, SQLite,

FreeType, SGL, SSL, WebKit, surface management,

media framework and etc. The second part is the

application framework that provides APIs with

different functionalities and services such as setting an

alarm or reminder, accessing the location information,

phone calls, and etc. The application framework is

divided into two important parts. The first part is

activity manager that controls and monitors the

requested access permissions to different services. The

second part is package manager that is responsible for

installing and managing permissions. The third part of

Middleware is named Android runtime that is included

kernel libraries and Dalvik Virtual Machine (DVM).

DVM ensures that applications run in systems with

relatively smaller RAM, slower processors and without

swap space. The third layer is the application layer. It is

written in java and it provides a connection between end

users and applications. The provided applications in

this layer run in its own DVM and they can read native

codes from native libraries using JNI [3], [5].

Figure 1. Android’s architecture, the classic diagram.

B. Data Exchange Mechanism

In the android architecture, all the applications can

be run only in their specific process area meaning that

they can only access to their files and data. The reason

of providing this security architecture is to protect the

applications and their sensitive data from the existing

malware. However, the applications and services need

to communicate with each other. Therefore, there is a

data exchange mechanism for that reason. Regarding

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
20

]

 2 / 8

https://journal.itrc.ac.ir/article-1-37-en.html

this mechanism, Intents are playing the role of

communicators between activities, services and

applications. Each Intent is a message that contains all

the information and data that need to be conveyed,

including the receiver information and the data. A

Binder driver is implemented at kernel layer. Hence, all

the transferred data between processes and applications

pass through this driver. In addition, all the intents and

the exchanged messages in the processes and processes

components pass through the Binder.

The Binder component is implemented at two

layers. The first layer, that is named “The Binder

Framework”, is a user-level library called libbinder.

This is loaded into most processes on Android OSs. The

task of this library is wrapping the requests and send

them via system calls. On the other hand, un-wrapping

objects and creating the respond objects in service

processes are done through this library. Those objects

that are created by Binder are called Parcel [5].The

second layer is named, The Binder driver that controls

all the process communications in kernel level. In fact,

the Binder library at the user level by calling system

functions sends the required messages and requests to

this driver, then the Binder driver drives them to the

specific service or process.

III. RELATED WORKS

An analysis of different malware techniques and

their countermeasures was conducted in [6]. The

authors proposed a novel method for malware

development and attack techniques in the area of

mobile botnets, usage pattern based attacks and

repackaging attacks. It takes the read contacts

permissions, send SMS permissions and their malware

sends an auto response to miscalls.

The reference of [6], [7] mentioned one of the new

malware that take advantage of users and deceit them

using a technique called repackaging. This technique is

highly effective because users have difficulties to find

out the difference between a legitimate application and

the malware. In this technique, the malware tries to

reverse engineer popular and legitimate applications,

modifies them to inject malicious code after that

republish them to the market. As a result, because of the

popularity of the applications, users download them

without having a knowledge that the applications are

taking advantages of their information and

smartphones. Among the researches that has been

conducted on detection techniques of these kind of

malware, the research of [8] can be mentioned. The

authors, presented DNADroid Android malware

detection tool. The proposed tool used a technique

based on program dependence graphs (PDGs) to obtain

the similarities between the malicious and legitimated

applications and detect the repackaging technique.

In reference of [9] a tool named Applink was

extended to detect the repackaging technique using

watermarking technique. Additionally, the authors of

[10] extended DroidMOSS tool by using hashing

algorithms to extract the similarities between the

repackaged malware and eliminated applications. In the

research of [11], a fingerprint method in the layer of

applications’ code was used to detect and analyze the

repackaging techniques. Moreover, JuxtApp is a tool

that extracts static features of codes, then by showing

the bit vectors, it compares the application to detect the

malicious activity [12].

By using and taking advantage of Firmware, some

other methods of Android malware expand and infect

smart systems these days. In this technique, there are

some applications that are pre-installed by the

Firmware creator. The users cannot uninstall these

application unless they have root access to their android

device. The pre-installed applications have privileged

access comparing to other application in the

smartphones.

In [13], Droidray tool is used to evaluate the

Firmware using static and dynamic methods, and then

they store the result in their own database and illustrate

them in an organized form. The reference of [14]

analyzed ten kind of Firmware and they investigate the

installed applications’ permissions. Additionally, they

investigated the vulnerabilities that can be lead to

information leakage or illegal access to the system

resources by the Firmware. As a result, 85.87% of the

pre-installed applications on the Firmware requested

more that required permission of the systems. Also

64.71% to 85% of the vulnerabilities in the firmware

are because the personalization that companies impose

on them.

On the other hand, Android operating system access

control model was considered by many researches. One

these researches is [15] that Android’s internal

components and their relationships were analyzed.

Based on the research of [16], most of the Android

applications request more that required permission

from users during the installation. Therefore, this is a

critical topic that is analyzed and considered by the

researches of [17]–[19]. The Coarse Grained

permissions in android is another weaknesses of

Android system. Based on this weakness the provided

permissions to applications allow them to access

multiple APIs that are unnecessarily [16]. However, the

reference of [20] proposed a tool for Fine Grained APIs.

Regarding the Android system access control

model, users are not able to give permissions to the

applications in different circumstances. Based on this

issue, the researches of [21], [22] focused on method

that provides users the ability of giving permissions

from context.

The remarkable common issue to all previous

researches on Android malware indicates the exiting

malware still have long way to go and they are created

to be executed on the upper layers of the Android OSs;

hence, they are easily detectable. Last but not least, the

only research that considered on introducing methods

to design Android malware in the Android kernel level

based on the exchanging data mechanism is the

reference of [3]. In this research, the authors used a code

injection method in the layer of framework to track the

communication data in Binder. Nevertheless, this

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
20

]

 3 / 8

https://journal.itrc.ac.ir/article-1-37-en.html

method is detectable by the simple detection

techniques.

IV. THE ATTACK MODEL

As explained in previous sections, large amounts of

information and data exchanged between processes

pass through the Binder component. Therefore,

controlling this component means controlling the

Android OS and the users’ smartphones. Based on the

existing literature, one of the most vital issues that many

Android programmers as well as many security

researchers have not considered is that all internal

messages and intents of each process, that are

exchanged between internal components of a program,

pass through the Binder components.

For instance, an android programmer utilizes

HTTPS protocol to provide a secure media and

communicate with a web-base server, so all the related

data transfer through this media. However, before

transferring the data, the data are being passed to the

network management service through the Binder

components unencrypted and in plain text. Then data

will be encrypted in the service. Hence, there is a

possibility to access those sensitive and unencrypted

data through the Binder component.

Based on the explanation, a Hooking method can be

used in order to capture all the messages exchanged

through the Binder. The followings explain the methods

and its different types in detail.

Hooking is a notion of obtaining control of

application execution flow without any change and

recompile the source code. This is achieved by stopping

the function calls and redirecting them to tailor made

codes. By injecting the custom code, any operation can

be performed. After that, the main function capabilities

can be executed and the result can be returned simply

or it can be changed to be returned to the code that

recalled the Hooked function. The hooking methods are

conducted in two levels as follow:

1) Hooking at the user level: in this method, a code

is injected to the related library. Using this code, a small

number of the commands in target system function (the

function that we want to be tracked) is replaced by an

unconditional jump to the diversion that is created by

the attacker. Those Target function commands are

stored in a temporary function, which are included

commands that have been removed from the target

function and it created an unconditional jump to the rest

of the target functions. This type of Hooking is the

simplest and most widely used approach to intercept the

functions.

It is noteworthy that anti-malware programs with a

simple hashing functions can detect and prevent the

injection codes to services and sensitive processes of

Android OS. According to the code injection that is

done via a particular system functions, anti-malware

programs can track these functions and prevent the code

injection.

2) Hooking at the kernel level: typically, to organize

and instant access to the system functions, Android OS

uses an interface table named "system call table". This

table contains the addresses of most system functions in

the Android OS. When a system function is called

within an application by using this table, first

application control is returned to the Android OS. Right

after that, the OS refers to the system call table and

depending on the type of the requested system function

and the arguments, the address of the required system

function is find and it is called.

Consequently, in order to intercept the system

functions, we need to replace the existing addresses in

the system call table with our own function addresses,

and after utilizing our own function we jump to the

original function address.

Considering that this method is done in kernel level,

anti-malware applications are not able to detect them

easily, and the prevention is much more difficult than

the previous method.

Due to the fact that the Binder library uses a system

function called ioctl to connect with the Binder driver

and transfers data, with intercepting ioctl system

function it is possible to get access and extract all the

exchanged data and information using the Hooking

method in Kernel layer.

V. COUNTERMEASURE

According to the previous explanation in the attack

model section, it is evident that the main and

fundamental methods used in these type of malware is

the hooking method. Therefore, in our prevention

proposed method, possibility of using this attack

approach in the installed applications on the Android

smartphones goes away. A detailed explanation of the

hooking attack restriction and prevention methods is

provided in the following subsections.

A. Hooking prevention at the user level

In order to prevent and deal with this hooking

method, a hashing method is utilized to investigate code

injections to the critical android OS’s services and

processes. Considering the fact that this method of

hooking attempts to change some part of the application

codes, it changes the hashing value of the application or

the service as well. Thus, it is obvious to prevent and

detect the attack with storing the existing services and

applications’ hash values on the users’ system.

B. Hooking prevention at the kernel level

Fig. 2 illustrates the proposed solution architecture

to prevent and deal with the hooking attack on kernel

level. As explained the hooking attack method at the

kernel level in section 5, the attack is successfully done

when the attacker is able to intercept and change the

existing addresses in the system call table. Hence, to

avoid and deal with these kind of attacks, it is necessary

to prevent changing the addresses in the system call

table. For this purpose, with developing a kernel

module which is periodically check the integrity of the

addresses in the system call table, occurring the

hooking techniques by malware can be prevented.

Details of how the table is going to be checked is set out

in the prevention implementation section.

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
20

]

 4 / 8

https://journal.itrc.ac.ir/article-1-37-en.html

Figure 2. Proposed architecture the hooking attack prevention on the kernel level

VI. IMPLEMENTATION

Implementation of the attack model and detection

method are explained in the following subsections.

A. Attack Implementation

In order to extract the data exchanged between

processes and applications in Android OS, we designed

a kernel module for the Android OS kernel. This

module changes the system call table and it modifies

ioctl system function address.

Since there are millions of calls per minute in ioctl

system function on Android OSs, processing this size

of information in the OS kernel level is almost

impossible. It is because of the real-time processing.

Thus, in order to analyze, intercept and extract the

exchanged data between two specific processes

accurately and more quickly, we can filter the incoming

messages by examining the UID process of the function

which has called ioctl system function and the UID of

the called services.

Fig. 3 illustrates the structure related to the ioctl

system call and the data structure within the ioctl [5].

As shown, the first argument of ioctl system call is the

name of the driver that is supposed to receive the data

in the form of this system call. The second argument is

the request code that is supposed to be given to the

drive. And the third argument is an address to the data

structure of binder_write_read which contains the

information and sent commands to the defined service

or component. As illustrated the submitted information

are sent marshalled.

All data are sent one after another in relevant

format. In order to obtain this information and

determining the data, it is necessary to unmarshall them.

Moreover, with checking the InterfaceToken and code

fields, the service and the function will be specified.

Then, considering the signature of the service function,

the data from the Hooked system call will be extracted.

For instant, as illustrated in Fig. 3, the receiver is Isms

and the function is sendText.

Figure 3 A Binder Payload for SMS process [5].

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
20

]

 5 / 8

https://journal.itrc.ac.ir/article-1-37-en.html

At the end we need to consider that the function

address we replace with the original function address of

ioctl in the system call table, should have a signature

similar to the original one meaning that the input and

output parameters must be defined exactly like the

original function.

B. Detection Implementation

Implementation explanation of the hooking attack

prevention methods is provided in the following

subsections.

Implementation of hooking prevention at the user level:

Hooking for intercepting Binder transactions at user

level performed through “Libbinder.so” library as

shown in Fig 4. Before making any changes in this

library, it is necessary to get a hash value of the related

file and in different periods of time this hash value be

compared with new hash values of the file. Therefore,

if any difference is detected during the hash value

comparison, the attack is detected and the users can be

warned.

Implementation of hooking prevention at the kernel

level: In order to correct those addresses that are exist

in the memory in the system call table, it is required to

find out the actual and primitive addresses of the system

functions exist in the table. On the Android OS the

system function addresses exist in a file named

“Vmlinuz-linux”. In fact, “Vmlinuz-linux” file contains

static parts of the Linux kernel such as system calls,

which are loaded on the memory during the OS booting

operation. Adding these addresses with the address of

the “Vmlinuz-linux” file in the memory gives the actual

address of the system functions in the memory. In this

method, firstly the binder library at the user level loads

a kernel module. Then, the loaded kernel module

performs the system call table correction in case of any

changes has occurred.

VII. EVALUATION

In order to evaluate the proposed model, we

designed and implemented a kernel module for the

Android OS Goldfish kernel with version 2.6.29. As

specified in the following code, that is hooked in a

system function, it is necessary to extract the required

data initially. Then we call the main system function.

int hooked_open (const char *pathname, int flags)

{

Before_transaction (buff);

int ret = open (fd , command, buff);

After_transaction (buff);

return ret ; }

To verify the implemented kernel module, we

hooked three system functions called Open, Read and

Write, and we capture the logs from their calls by

applications or Android OS services. As illustrated in

Fig. 5, this module is properly implemented and the

system functions are being hooked. In detail, when a

system function is called, first the system function of

our_sys_read, our_sys_open, or our_sys_write is

executed then the Handle is returned to the original

system call.

As shown in Fig. 3, the UID of the process which

has called this system function is extractable. For

instance, three processes with the UIDs of 1000 and

2987 are visible in the Figure. Consequently, it is

possible to hook and analyze the only system function

which was called by a process with a unique ID.

Figure 4. Hooking the system function.

Considering that the proposed method is designed

in a kernel module form and it hooks the system

functions in real time mode and extract the information,

its executive overhead is equal to calling a normal

system function and it is very meager.

VIII. CONCLUSION

In this paper, from a security perspective, we

described the Binder component on Android OS then

we investigated its security architecture. Furthermore,

with designing an active malware in OS Kernel, we

demonstrated how to penetrate into the Binder and

control data exchange mechanism in Android OS. By

considering the fact that most android malware that

have been designed so far, are operating in the higher

levels of Android OS. Hence, the detection and

confrontation with them can be easily conducted.

Besides, the only mechanisms that the malware use to

protect themselves are included obfuscation,

encryption, social engineering, and etc. These

mechanisms are easily detectable. Consequently, it is

the time for android malware to be more advanced and

be equipped with the knowledge of lower levels of

android OS.

As explained, this method is done in kernel level

and anti-malware applications are not able to detect

them easily, and the prevention is much more difficult

than the previous and existing methods. Therefore, we

proposed a detection method for these kind of attacks at

the user and kernel levels. As a result, using the

detection method, the possibility of conducting those

kind of attacks will go away.

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
20

]

 6 / 8

https://journal.itrc.ac.ir/article-1-37-en.html

ACKNOWLEDGMENT

This research has been supported by Iran

Telecommunication Research Center (ITRC), and we

are thankful to them for providing us the vast range of

materials besides their encouragements and support to

conduct this research.

REFERENCES

[1] N. Samet, A. Ben Letaifa, M. Hamdi, and S. Tabbane,

“Forensic investigation in Mobile Cloud environment,”

2014, pp. 1–5.
[2] F. Daryabar, A. Dehghantanha, B. Eterovic-Soric, and K.-

K. R. Choo, “Forensic investigation of OneDrive, Box,

GoogleDrive and Dropbox applications on Android and

iOS devices,” Aust. J. Forensic Sci., pp. 1–28, 2016.

[3] N. Artenstein and I. Revivo, “Man in the binder: He who

controls ipc, controls the droid,” Eur. BlackHat Conf, 2014.

[4] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner,

“A survey of mobile malware in the wild,” in Proceedings

of the 1st ACM workshop on Security and privacy in

smartphones and mobile devices, 2011, pp. 3–14.

[5] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro,

“CopperDroid: Automatic Reconstruction of Android

Malware Behaviors.,” in NDSS, 2015.

[6] R. Raveendranath, V. Rajamani, A. J. Babu, and S. K.

Datta, “Android malware attacks and countermeasures:

Current and future directions,” in Control, Instrumentation,

Communication and Computational Technologies

(ICCICCT), 2014 International Conference on, 2014, pp.

137–143.

[7] I. Lookout, “Lookout Mobile Threat Report August 2011,”

2011.

[8] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones:

Detecting cloned applications on android markets,” in

Computer Security–ESORICS 2012, Springer, 2012, pp.

37–54.

[9] W. Zhou, X. Zhang, and X. Jiang, “AppInk: watermarking

android apps for repackaging deterrence,” in Proceedings

of the 8th ACM SIGSAC symposium on Information,

computer and communications security, 2013, pp. 1–12.

[10] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting

repackaged smartphone applications in third-party android

marketplaces,” in Proceedings of the second ACM

conference on Data and Application Security and Privacy,

2012, pp. 317–326.

[11] R. Potharaju, A. Newell, C. Nita-Rotaru, and X. Zhang,

“Plagiarizing smartphone applications: attack strategies and

defense techniques,” in Engineering Secure Software and

Systems, Springer, 2012, pp. 106–120.

[12] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song,

“Juxtapp: A scalable system for detecting code reuse

among android applications,” in Detection of Intrusions and

Malware, and Vulnerability Assessment, Springer, 2012,

pp. 62–81.

[13] M. Zheng, M. Sun, and J. Lui, “DroidRay: a security

evaluation system for customized android firmwares,” in

Proceedings of the 9th ACM symposium on Information,

computer and communications security, 2014, pp. 471–482.

[14] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The

impact of vendor customizations on android security,” in

Proceedings of the 2013 ACM SIGSAC conference on

Computer & communications security, 2013, pp. 623–634.

[15] W. Enck, M. Ongtang, and P. McDaniel, “Understanding

android security,” IEEE Secur. Priv., no. 1, pp. 50–57,

2009.

[16] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner,

“Android permissions demystified,” in Proceedings of the

18th ACM conference on Computer and communications

security, 2011, pp. 627–638.

[17] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout:

analyzing the android permission specification,” in

Proceedings of the 2012 ACM conference on Computer and

communications security, 2012, pp. 217–228.

[18] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A

Study of Android Application Security.,” USENIX Secur.

Symp., vol. 2, p. 2, 2011.

[19] S. Jana and V. Shmatikov, “Memento: Learning secrets

from process footprints,” in Security and Privacy (SP),

2012 IEEE Symposium on, 2012, pp. 143–157.

[20] J. Jeon et al., “Dr. Android and Mr. Hide: fine-grained

permissions in android applications,” in Proceedings of the

second ACM workshop on Security and privacy in

smartphones and mobile devices, 2012, pp. 3–14.

[21] M. Conti, V. T. N. Nguyen, and B. Crispo, “CRePE:

context-related policy enforcement for android,” in

Information Security, Springer, 2010, pp. 331–345.

[22] S. Bugiel, S. Heuser, and A.-R. Sadeghi, “Flexible and

Fine-grained Mandatory Access Control on Android for

Diverse Security and Privacy Policies.,” in Usenix security,

2013, pp. 131–146.

[23] M. Salehi, F. Daryabar, and M.H. Tadayon, “Welcome to

Binder: A kernel level attack model for the Binder in

Android operating system.,” in 8th International

Symposium on Telecommunications (IST), 2016.

Majid Salehi received his

B.Sc. degree in computer

engineering from Isfahan

University, Isfahan, Iran in

2010, and his M.Sc. degree in

computer engineering from

Sharif University of

Technology, Tehran, Iran in

2016. He is currently a

researcher with the DNS

Laboratory at Sharif University of Technology. His

research interests include Malware detection, OS security,

and information forensics.

Mohammad Hesam Tadayon

received his M.Sc.

degree in mathematics from the

University of Tarbiat

Modares,Tehran, Iran, in 1997,

and his Ph.D. degree

in applied mathematics (coding

and cryptography)

from the University of Tarbiat

Moallem of Tehran

(Kharazmi), Tehran, Iran, in 2008. He has been

holding an Assistant Professorship position with Iran

Telecommunication Research Center (ITRC) since

2008. He is a member of national councils in the

Iranian Ministry of Science and Technology. He has

served in many research and industrial projects. His

research interests include information theory, error-

control coding and data security.

Farid Daryabar is a

cybersecurity researcher-

developer with Iran

telecommunication Research

Center. He graduated from the

University Putra Malaysia with a

Master of Science

(Cybersecurity/Forensic). He

has (co)authored several

publications in Cybersecurity

area. Farid has awarded a silver

and two bronze medals in R&D Invention/Innovation

(PRPI12 and MTE13), CEH and CHFI.

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
20

]

 7 / 8

https://journal.itrc.ac.ir/article-1-37-en.html

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
20

]

Powered by TCPDF (www.tcpdf.org)

 8 / 8

https://journal.itrc.ac.ir/article-1-37-en.html
http://www.tcpdf.org

